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Abstract. We analyse quantal Brownian motion édhdimensions using the unified model for
diffusion localization and dissipation, and Feynman—\Vernon formalism. At high temperatures
the propagator possesses a Markovian property and we can write down an equivalent master
equation. Unlike the case of the Zwanzig—Caldeira—Leggett model, genuine quantum mechanical
effects manifest themselves due to the disordered nature of the environment. Using Wigner’'s
picture of the dynamics we distinguish between two different mechanisms for destruction of
coherence: scattering perturbative mechanism and smearing non-perturbative mechanism. The
analysis of dephasing is extended to the low-temperature regime by using a semiclassical strategy.
Various results are derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion.
We also analyse loss of coherence at the limit of zero temperature and clarify the limitations
of the semiclassical approach. The condition for having coherent effect due to scattering by
low-frequency fluctuations is also pointed out. It is interesting that the dephasing rate can be
either larger or smaller than the dissipation rate, depending on the physical circumstances.

1. Introduction

Classical Brownian motion is described by the Langevin equation
m& +nx =F 1)

wherez is the position of the particle; is the friction coefficient, andF = — VU (x, t) is a
stochastic force. This equation is meaningful only in a statistical sense. The time evolution
of a phase-space distributign(z, p) is obtained by solving (1) for various realizations

of the stochastic potential, and then averaging over all these realizations. The stochastic
potential is zero on the average and its correlations are

UE", U, ) =¢@" —1) - wx" — ). 2

Typically these correlations are characterized by a ‘short’ temporal scgaland a
‘microscopic’ spatial scale¢. Usually, it is further assumed that higher moments are
determined by Gaussian statistics. The Langevin description can be derived by considering
a general Hamiltonian of the form

H = Ho(z, p) + Henl, Qu, Po) (3

where x and p are the canonical variables that correspond to the distinguished degree
of freedom,Hy = p?/2m is the free-motion Hamiltonian, and,,, P,) are environmental
degrees of freedom. The dynamical variablenay represent the position of a large particle.

In the one-dimensional version of Brownian motion it may represent the position of a piston.
The actual conditions for having the reduced Langevin description turn out to be quite
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weak [1]. The environment should consist of at least three degrees of freedonfastith
chaotic dynamics.Fastimplies that the classical motion is characterized by a continuous
spectrum with high-frequency cut-off, such that the motion of the environment can be treated
adiabatically with respect to theow motion of the particle. It is essential to assume that
the following condition is fulfilled

. . . 1
generic Brownian motion & % L — (4)
T,

wherez,. and¢ characterize the correlations of the stochastic potential which is experienced
by the particle. Equation (4) is the condition for using the white noise approximation
(WNA). Thus, the noise is characterized by its intensity

b= / é(x) dr - [ (0)] 5)

and its temporal correlations are adequately described by the formal expressipn=
vé(t). Without loss of generality we assume from now on the normalizatité®) = —1.
The correlations of the stochastic force satisfy

(FOFA))arx = ¢t —1). (6)
In the general case, (6) is less informative than (2). However, in the case of a classical
particle that experiences white noise, the additional information is not required at all! It
should be emphasized that this observation does not hold if (4) is not satisfied.islf
larger than¢/v, then the particle will perform a stochastic motion that depends crucially on
the ‘topography’ of the stochastic potential.

The classical analysis further reveals [1] that associated with the stochastic potential
there is also a dissipation effect. If the environment is characterized by either microcanonical
or canonical temperaturg, then the friction parameter will be

Vv
"~ 2kgT
Thus, any generic environment, in the sense specified above, leads to the universal ohmic
behaviour. The motion of the particle is determined by the interplay between the friction and
the noise. The friction leads to damping of the particle’s velocity, while the noise pumps
energy back into its motion. Eventually we have diffusion with coefficiBgt= v/n?.
If (4) is not satisfied, then we will have diffusion even in the absence of dissipation. The
latter ‘non-dissipative diffusion’ is characterized by the coefficiBgt~ ¢v, wherev is the
velocity of the particle. This latter type of diffusive behaviour should not be confused with
the generic ‘dissipative diffusion’ that characterizes Brownian motion.

One wonders whether there is a well-defined quantized version of the above Langevin
equation. Is it possible, quantum mechanically, to characterize a universal dynamical
behaviour that corresponds to classical Brownian motion? Are stronger physical conditions
required in order to guarantee generic behaviour? In this paper we have no intention to fully
answer all these questions. Rather, as in previous publications [2], we follow the Caldeira—
Leggett strategy [3] and consider the motion of a particle under the influence of an effective
(non-chaotic) bath that is composed of infinitely many oscillators. The proper model that
corresponds (classically) to the Langevin equation (1) with (2) is the ‘diffusion, localization
and dissipation’ (DLD) model that has been introduced in [2]. These three effects (diffusion,
localization and dissipation) result naturally from the quantum mechanical solution of the
DLD model.

Quantum mechanically, it is convenient to use the Wigner functioR, P) in order
to represent the reduced-probability density matrix. We can use the Feynman—Vernon (FV)

n fluctuations~~ dissipation 7
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formalism [4] in order to find an expression for the propagaf@mr, P|Ro, Pp). This
propagator is uniquely determined once the frictigi, the temperature of the batiT)

and the spatial correlations(r) are specified. The dependence of the propagator on the
bath temperature is via the appearance of a quantum mechanical version of the noise kernel
¢(t). The latter is related to the friction coefficient via a universal fluctuation—dissipation
relation. At high temperatures the quantum mechanigqal) coincides with its classical
expression. At the limit of zero temperatug€r) does not vanish, rather it develops a large
negative tail. In the latter case,(w), the power spectrum of the noise, reflects the zero
point fluctuations (ZPF) of the environmental modes.

The Zwanzig—Caldeira—Leggett (ZCL) model [3] constitutes a special formal limit of
the DLD model. It is obtained by taking the limit— oo. Both the ZCL model and the
DLD model will be generalized in this paper to allow the analysis of Brownian motion
in d dimensions. A modified version of the the DLD model incorporates the effect of
long-range (power-law) spatial correlations. On the other hand, we are not discussing the
DLD model in its full generality (as in [2]), but rather restricting ourselves to the particular
circumstances that correspond in the classical limit to generic Brownian motion. Thus, we
are considering thehmicDLD model, and further assume that (4) is satisfied.

In the case of the ZCL model, the quantal propag&idR, P|Ro, Pp) is a Gaussian
stochastic kernel. Consequently the dynamics can be obtained by solving the Langevin
equation (1) with (6). At low temperatures the quantum mechanical versigiiofshould
be used. At high temperatures(r) becomes classical-like and consequently the ZCL
propagator coincides with its classical limit. These observations do not hold in the case of
the DLD model [2]. Furthermore, the distinction between the quantal DLD propagator and
its classical limit persists even in the limit of high temperatures.

It is important to define what is the meaning of ‘high temperatures’. As in the classical
case, a relatively simple description of the dynamics is obtained if it possesses a Markovian
property. With a Markovian property it is possible to obtain the long-time evolution by
composing short-time evolution steps. It is also possible then to write down a corresponding
master equation for the Wigner function. The FV path-integral expression for the propagator
contains the quantum mechanical versionpdt) rather than the classical one. In order to
have a Markovian property one should argue that it is possible to use the WNA, meaning
to replaceg () by the effective classical-like delta function. Still, in the case of the DLD
model, the result of the path integration is not classical-like: the high-temperature Markovian
limit is not the same as the classical limit.

It turns out that the quantum mechanical condition for using the WNA, thus having a
Markovian property, is more restrictive than (4). For ballistic-like motion we shall see that
the actual condition is, in most circumstances,

v kBT

high temperatures < ;<% (8)

A recent derivation of the high-temperature ohmic DLD model which is based on a synthetic
random matrix theory (RMT) Hamiltonian has been reported in [5]. The existence of such
a derivation is most encouraging since it further supports the idea of having a universal
description of quantal Brownian motion, at least in the Markovian limit. It has been
speculated by the authors of the latter reference that a future extension of their formalism
will lead to an agreement with the general result of [2]. The high-temperature ohmic DLD
model has been discussed in [2] and has been further analysed in [5]. The physical picture
of high-temperature dynamics will be further illuminated in this paper.

Loss of coherence, or dephasing, is a central issue in the analysis of quantal Brownian
motion. Wigner's picture of the dynamics leads to the distinction between two different
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mechanisms for loss of coherence. In the case of the ZCL model one should consider the
‘spreading mechanism This classical-like non-perturbative mechanism is very effective

in smearing away the interference pattern. In the case of the DLD model, coherence is
much better maintained, and one should consider the perturbatedtéring mechanism

for dephasing.

At the limit of zero temperature, the spreading mechanism is still effective in suppressing
interference. One can use the Langevin formalism in order to analyse the smearing of the
interference pattern. It is important, however, to take into account the negative temporal
correlations of the effective noise [6]. On the other hand, the analysis of low-temperature
dephasing in the case of the ‘scattering mechanism’ is quite a subtle issue, and constitutes a
main concern of this paper. The Langevin formalism is no longer applicable, and the lack
of a Markovian property enforces a semiclassical approach. This has the added advantage
that it is possible to go beyond the analysis of a simple ballistic-like Brownian motion
and to analyse other types of transport. We shall distinguish between ballistic, diffusive
and chaotic motions through cavities. We shall derive various results and contributions
to the dephasing rate in the various temperature regimes and depending on the physical
circumstances. Some of these results coincide with similar computations that are related to
electrons in metal [7].

An important question is whether the scattering mechanism is still effective in
suppressing interference at the limit of zero temperature [12, 13]. It turns out that our
semiclassical approach, in spite of its other advantages, has a limited range of validity. It
can be trusted if the kinetic energy of the particle is sufficiently large. For ballistic-like
motion large energy means

large energy & % < % 9)
in analogy with (8). The latter condition can be cast into the more suggestivexfpra ¢,
where 1p is the de Broglie wavelength of the particle. The large-energy condition is
obviously satisfied in the case of the ZCL modeél-{ oo0). The large-energy condition
may not be satisfied in the case of the DLD model, and consequently the semiclassical
result should be modified. In particular, in case of a low-temperature thermal motion, the
contribution of the ZPF to the dephasing rate should be excluded.

2. The ohmic DLD model

We consider a bath that consists of infinitely many oscillators whose canonical coordinates
are (Q., P,). The bath Hamiltonian is

Pz 1,
Hbathzz om +§m%Qa - (10)

o

In the case of the DLD model the interaction of the particle with the oscillators is described
by
Hint = — Z Cq Qou(x — o) (11)

o

wherez, is the location of thex oscillator,u(x — x,) describes the interaction between the
particle and thex oscillator, andc, are coupling constants. It is assumed that the function
u(r) depends only ofir|. The range of the interaction will be denoted &yThe oscillators
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are distributed uniformly all over space. Locally, the distribution of their frequencies is
ohmic. Thus,

2

% ; mZZﬂS(a) — wy)8(x — xy) = nw for w < 1/z.. (12)
It is useful to define the spatial autocorrelation function

w(r) = / u(r —xHu(z") de'. (13)
Without loss of generality: () is normalized such that”(0) = —1. For example, we may
consider a Gaussian(r) for which

1/7r\2
— ¢2 _=(L
w(r)=1¢ exp( 2(£)>. (14)

The d-dimensional Fourier transform (FT) af(r) will be denoted by (k). The mode
density (after angular integration) jgk) = (C;/27)))k?*w(k). In general, we shall
assume that

g(k) = ce*okot for k < 1/¢ (15)

wheref characterizes the spatial scale of the correlations (argda dimensionless constant.

In the case of the short-range Gaussian-type correlations (14), the paramistaimply

equal to the dimensionality. For long-range power-law interaction it may be less thHan
possibly negative. In a moment we shall argue that in order to have a well-defined model we
must havelw”(0)| < oo. Therefore only—2 < ¢ is meaningful. The regime-2 <o <0

is well defined but it requires special treatment sing®) diverges.

The formal limit¢ — oo corresponds to the ZCL model. The ZCL model describes the
interaction of a particle with environmental modes whose wavelength is much larger than
the distances explored by the particle. Consequently, the interaction with-fieel mode
is approximated by a linear function. The interaction term in the Hamiltoniandifies
the ZCL model is of the following form (here generalized&taimensions):

Hint - \/EZ Cy Qaﬁa . (16)

The unit vectorsi, are assumed to be distributed isotropically. The distribution of the
oscillators with respect to their frequencies is assumed to be ohmic, as in (12) with the
§(x — x,) omitted.

The classical analysis of thel-dimensional DLD model constitutes a trivial
generalization of the one-dimensional DLD model that has been considered in [2].
Equation (3.10) in the latter reference should be replaced by the following expression for
the friction:

Firiction (V) = / a(tr)Vw(vr) dr (7)
-0

wherew is the velocity of the particle. For an ohmic batkr) can be replaced by né’' (7).
One obtains thetFicion = —nv. Obviously, in order to obtain a finite result it is crucial
to have|w”(0)| < oco. Recall that by convention we use the normalizatioh0) = —1.
Thus, the generalized version (15) of the DLD model is well defined provided< o.
The reduced motion of the particle will be described by the Langevin equation (1), where
the noise satisfies (2), with(z) = 2nkgT5(t). For the realization of a classical trajectory,
the global functional form ofv(r) is of no importance. Only the force correlations (6) are
important. The latter correlations are well defined as longud%0)| < oo, and by our
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convention they are equal(z). The parametef is insignificant in the classical analysis
of the ohmic DLD model, and therefore the classical description of Brownian motion is the
same as in the case of the ZCL model.

Quantum mechanically, the reduced dynamics of the system may be described by the
propagator/C(R, P|Rg, Po) of the probability density matrix. For the sake of comparison
with the classical limit one uses the Wigner functio(R, P) in order to represent the latter.
Using FV formalism [4], an exact path-integral expression for this propagator is obtained.
The FV expression is a double sufi Dx'Dx” over the path variables' (z) andx”(7). It
is convenient to use new path variabRs= (x’+x”)/2 andr = (x” —x’), and to transform
the [/ DRDr integral into the form [2]

R.P
K(R, P|Ro, Py) = DRK[R] (18)
Ro, Py
where[R] is a real functional defined by the expression
]C[R] — /Drei%(sfree‘FsF)e_%zsN. (19)

The Dr integration is unrestricted at the endpoints, and the free action functional is
Siee R, 7] = —m fé dr Rr. The action functionalSz[R, ] corresponds to the friction,
and the functionalSy[R, r] corresponds to the noise. The explicit expression for the
friction action functional, assuming an ohmic bath, is

t
Sr[R, 7] = n[ dr Vw(r) - R. (20)
0
The general expression for the noise functional is
t t
Sylz', 2] = % / / dry dy ¢ (1, — 1) [w(xhy — &) + w(xh, — ) — 2w(zy —x))]  (21)
0 Jo

wherex; is a short notation for:(#;). The power spectrum of the noigdw) is the FT of
the noise kernep(z). For an ohmic bath

_ h
¢ (@) = noh coth(ZkZ)T) for @ < 1/1.. (22)
The ZCL version forSr and Sy is obtained by taking the limi¢ — oo which is equivalent
to the formal substitution (r) = —r?/2.

The power spectrum (22) of the quantum mechanical noise is the same as that of a
classical white noise in the restricted frequency regimne kT /h, where¢ (w) = 2nkgT.
If the temperature is high enough, such thdt.1< kzT /R, then the power spectrum
is essentially classical. At lower temperatures the power spectrum contains a non-trivial
frequency zondzT/h < @ < 1/1., where one may use the approximatiotr) = hnw.
This component of the power spectrum does not vanish in the limit of zero temperature. It
corresponds to the ZPF of the environmental modes. The temperature becomes effectively
zero if kgT/h < 1/t. At intermediate temperatures, namelyr 1< kzT/h < 1/7., it is
convenient to write the power spectrum as a spitw) = ¢o(w) + ¢r(w), where ¢o(w)
corresponds to the ZPF amg (w) is the excess thermal noise:

b1 (@) = 29—
e nexp(%) -1
The propagator (18) possesses a Markovian property if it is legitimate to make the WNA.
The actual condition for having effectively white noise will be discussed in a later section.
At low temperatures it is essential to consider the non-trivial nature the quantal noise in
order to obtain the proper quantum mechanical dynamical behaviour [8].

forw < 1/7,. (23)
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3. Propagation in a high-temperature environment

In the absence of noise and friction, the free-motion propagator of the Wigner function is
the same as in the classical limit. Namely,

free

IC(R, P|Ro, Po) = K% = 278(P — Py) & <(R — Ro) — f;) . (24)
m

For simplicity, but without loss of generality, we shall consider whenever possible one-
dimensional motion. In the case of the ZCL model, bSthand Sy are quadratic forms,
and therefore the propagator is a Gaussian kernel. It follows that the dynamics of the
Wigner function is purely stochastic, and it can be described by Langevin equation (1)
with (2) and (22). In this sense, there are no genuine quantum mechanical effects that are
associated with Brownian motion, as long as the ZCL model is used for its description.
The situation is quite different in the case of the DLD model. Here the propagator is
non-Gaussian, and, in general, it may have non-stochastic features.

In this section we shall restrict ourselves to the high-temperature regime, where the
WNA ¢(t) = vé(r) can be applied. Whenever the WNA applies, the ZCL propagator
becomes identical with the classical propagator for damped motion, namely

K(R. P|Ro, Po) = K{pheq= Gaussian (25)

In contrast, in the case of the DLD model, the high-temperature limit of the propadyzer
not coincidewith its classical limit. An explicit calculation, as in [2], gives the following
expression:

kg

162
K = Wijex Kiompeat € 7 (1= Wiyen)Kie (26)

free

This expression is also valid for the generalized DLD model provideddf The precise
value of the parametef is defined here viav(0) = ¢2. Above, W(R — R', P — P') is
a smooth Gaussian-like kernel that has unit normalization. Its spread in phase space is
characterized by the momentum scaj&, and by an associated spatial scale. The symbol
* stands for convolution. Thus, the classical propagator is smeared on a phase-space scale
that correspond ta\p = /¢ and there is an additional unscattered component that decays
exponentially and eventually disappears. The structure of the propagator is illustrated in
figure 1. The significance of this structure will be discussed in the next section.

To write down an explicit expression for the propagator is not very useful. Rather, it
is more illuminating to follow the standard procedure [3] and to write an equivalent master
equation. This is possible since at high temperatures the path-integral expression possesses
a Markovian property. Namely, since bafk andSy are local functionals of the paths, it is
possible to regard the finite-time propagation as the convolution of (infinitesimal) short-time
kernels. The derivation of the master equation is explained in appendix B. The final result
is

0 1
@ _ [—aR—P+aPiGF*P+vGN*]p. 27)
ot m m
The friction kernel is defined as follows
w'(r) 1 . P—P
Gr=FT =—Gp| —— 28
: < r ) /" ( hje ) (28)

and the noise kernel is

2 ’
Gn = }_%fT(w(r) —w(0) = (%) [_ié,v (P 7 ) - P/)] : (29)
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B 4

profile

p Figure 1. Upper plot: phase-space illustration for the
X structure of the DLD propagator. Lower plot: the
projected phase-space density.

Both G andG y are smooth Gaussian-like scaling functions, properly normalized to unity.
If the Wigner function does not possess fine details on the momentum/stéaléhen

the convolution withGr can be replaced by multiplication with 1, and the convolution

with Gy can be replaced b§?/d P2. These replacements are formally legitimate both in

the classical limitx — 0, and in the ZCL limit¢ — oco. One obtains then the classical

Fokker—Planck equation

ot P2

Inspection of (24) yields the same observation. Namely, that if the propagator acts on
a smooth Wigner function (no features on momentum sg#ly, then the second term
becomes vanishingly small, while the first term becomes effectively classical.

) 1 92
m m

4. Dephasing within the Wigner picture

The Wigner function may have some modulation on a fine scale due to an interference
effect. The standard textbook example of a two-slit experiment will be analysed below,
where the interference pattern has the momentum &galésee figure 2)d is the distance
between the slits. In this section we shall explain the possible mechanisms that lead to the
disappearance of such an interference pattern. In view of the semiclassical point of view of
the next section, we use the term ‘dephasing’ in order to refer to this disappearance effect.
In this section, as in the previous one, we are still limiting ourselves to the high-temperature
regime.

In the case of the ZCL model, the propagator is the same as the classical one, and
therefore we may adopt a simple Langevin picture in order to analyse the dephasing process.
Alternatively, we may regard the dephasing process as arising from Gaussian smearing of the
interference pattern by the propagator. In the case of the DLD model we should distinguish
between two possible mechanisms for dephasing:
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slits
X
Dx
Ax
B
Figure 2. Upper plot: the geometry of a two-slit

‘ Ap experiment. The propagation of the wavepacket is in the
y direction, and the interference pattern is resolved on the
screen. Lower plot: phase-space picture of the dynamics.
The Wigner function of the emerging wavepacket is
X projected onto théx, py) plane.

e scattering (perturbative) mechanism;

e spreading (non-perturbative) mechanism.

Actually, it is better to regard them as mechanisms to maintain coherence. The first
mechanism to maintain coherence is simply not to be scattered by the environment. The
second mechanism to maintain coherence is not to be smeared by the propagator. The first
mechanism is absent in the case of the ZCL model. We shall see shortly that the first
mechanism is much more effective in maintaining coherence. The notions perturbative and
non-perturbative are used in order to suggest a connection with an earlier work [6]. The
smearing effect can be regarded as arising from the accumulation of many small-momentum
scattering events. A conventional perturbative approach cannot be applied in order to analyse
such a dephasing process, even in the limit of very faint noise.

Having in mind the specific example of a two-slit experiment, we should distinguish
between two cases. If the environment is characterized by a spatial correlationé scale
that is much larger thar, then we can ‘forget’ about the DLD model and just use the
ZCL model. The relevant mechanism for destruction of coherence in this case is the
spreading mechanism (see the detailed analysis in the next paragraph). If the environment
characterized by a spatial correlation scéle d then a totally different picture emerges.
Now, the Wigner function contains a modulation on a momentum scale much finer than
h/¢. This modulation is not affected by the friction, but its intensity decays exponentially
in time. This is based on inspection of either the propagator (24), or the equivalent master
equation (27). In the latter case note that the convolution With can be replaced by
multiplication with —(¢/h)?. The decay rate is

2
1 = 2nk+” WNA for 0 < o. (31)
Ty h
This is a universal result for the dephasing rate due to the ‘scattering mechanism’, since it
does not depend on details of the quantum mechanical state involved. However, the validity
of the result is restricted to the high-temperature regime, where WNA can be applied.
For completeness we turn back to the detailed analysis of dephasing due to spreading.
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This mechanism leads to non-universal results, since the calculation of the dephasing time
depends on actual details of the interference pattern. For concreteness we consider the
simplest case of a two-slit interference experiment. The wavepacket that emerges from the
two slits is assumed to be a superpositipte) = > ¢(|x|) expik|lx F d/2|), wherehk

is the momentum of the incident particle, apdx|) is a radial envelope function. The
corresponding Wigner function is

[o¢]
p@,p) ~ (14 cosd - p/4) X ponesi. p) = Y . pu(x, p). (32)
n=—0oo
The one-slit Wigner function is multiplied by c%(%d - px), and therefore it is natural to
regard the two-slit Wigner function as composed of partial wavepackets, each characterized
by a different transverse momentum. By definition the partial wavepagketualsp for
|p. — 2nn/d| < 7/d and equals zero otherwise. Each partial wavepacket represents the
possibility that the particle, being scattered by the slits, had acquired a transverse momentum
which is an integer multiple ofAp, = 27x%/d. Note that the corresponding angular
separation isAp,/(hk) = Ap/d, as expected, and that the associated spatial separation
is Ax = (Ap/m) -t wheret = y/(hk/m) is the time up to the screen. It is important to
distinguish between the ‘preparation’ zone: d which is excluded from our considerations,
and the far-field (Franhoufer) zon#/A; < y whereh <« AxAp, and consequently the
individual partial wavepackets can be resolved. Due to the noise the interference pattern is
smeared on a momentum scéjge = +/vt, and on a corresponding spatial scéte= /vr-z.
The interference pattern disappears ofge ~ Ap, or equivalentlySx ~ Ax. This leads
to the following expression for the dephasing time:
Ti = "I;TBTdZ WNA for the ZCL model (two-slit) (33)
4

Comparing with (31) we observe that indeed the smearing mechanism is very effective in
suppressing the interference pattern. The result is also non-universal since it depends on
details of the interference pattern. In some other circumstances, where the Wigner function
is characterized by a different type of interference pattern (notably the case of a ‘vertical’
interference pattern), the dephasing time may be proportional to some fractional power of
the noise intensity [6]. In general, in the full analysis of the smearing process, one should
take into account the effect of friction. In the above example this effect has been neglected.

The analysis of dephasing in the case of the ZCL model is easily extended to the low-
temperature regime. Langevin formalism is still applicable, provided the appropriaie
is being used. The smearing of the interference pattern can be analysed as in the previous
paragraph. At the limit of zero temperature one should take into account the negative
correlations of the noise [6]. For the ballistic-like motion that has been considered above,
the smearing scalép? is proportional, at zero temperature, t@zinrather than ta, leading
to an anomalous (non-exponential) dephasing factor [6, 2].

5. Dephasing—the semiclassical point of view

There is a very different way to analyse dephasing, based on the semiclassical point of
view. The advantage of the semiclassical approach is that it allows one to extend the study
of dephasing to the low-temperature regime as well as to circumstances in which the simple
ballistic-like Brownian motion scenario is not applicable. Specific examples that will be

discussed later are the transmission via either chaotic or diffusive cavity. From now on we
regard the two-slit experiment as a special case of transport problem (see figure 3). The
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@ (b) (©)

Figure 3. Various types of transport problems:a)(ballistic transport as in the two-slit
experiment; If) transport via a chaotic cavityc) transport via diffusive cavity, as in weak
localization experiments. One should consider also the case of ergodic motion via a diffusive
cavity (not plotted).

probability of crossing the obstacle, or more generally being transmitted via some cavity,
can be written as a (double) sum over classical trajectories. Thus,

ZAHAZ exp(i S[x,] — S[ap] +iSF[$j, xp]  Swlxa, wb]) (34)
ab

h h h?

wheresS[x,] is the classical action for the classical trajectayy andA, is the corresponding
classical amplitude. Each pairandb of classical trajectories constitutes a stationary-phase
point of the exact path-integral expression. However, the notation is somewhat misleading
since once the friction functional is switched an,and » can no longer be considered
independent indexes. In particular, strictly speaking, the diagonal terms are no longer truly
diagonal. However, here comes a very important observation. In the case of the DLD
model, assuming that, andx; are well separated with respect to the microscopic stale

one hasSg[x., ;] = 0. Thus we conclude that friction has no effect on the interference
part of the sum (34), in consistency with our discussion of the scattering mechanism in the
previous section. On the other hand, friction will have an effect on the diagonal terms of
the sum, as required by the correspondence principle. It should be emphasized that in the
case of the ZCL model, friction may have a non-negligible effect also on the interference
terms, again in consistency with our discussion of the smearing mechanism.

The suppression of an off-diagonal term in (34) is given by the dephasing factor
exp(—Sy[x,, ] /R?). Using the definitions of appendix D it is possible to transform
expression (21) into an integral over the Fourier components of the motion involved.
Consequently, in most cases of interest, the dephasing factor can be cast into the form
exp(—t/t,), where

1 1 [ * e
o= h__Z/(; g(k) dk/o — @ Pk ). (35)

The domain of integration is illustrated in figure 4. The power spectRiit, ») of the

motion is calculated in appendix C for ballistic, chaotic and diffusive motion. Various

results that can be derived by using the above expression will be presented in later sections.
One should be very careful in the physical interpretation of(expr,). If we have

two unrelated trajectories and b, and we also have static disorder, then we will have

‘statistical’ dephasing that reflects the effect of averaging over realizations of the disorder.

Consider for example a two-slit experiment: the interference pattern on the screen will

be distorted for any particular realization of a static disorder, and will be washed away

completely upon averaging over different realizations. This mechanism is non-effeative if
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keT/h ~Z_ Dk?

Y

iV

Figure 4. The (k, w) plane. Left plot: the shaded regions indicate those environmental modes
that are effective in the dephasing process. The darker region indicates a possible excess
contribution due to ZPF. The curvek? illustrates the frequency-span #f(k, ). Right plot:

the power spectrum of an ergodic motion via a diffusive cavity is concentrated under the plotted
curves. See further details in appendix D.

andb are related by time reversal, for which static disorder giSigle,,, ;] = 0. However,

some suppression is also expected in the latter case, via the classical-like amphtyides

In the case of a dynamical environment the role of elastic scattering is taken by inelastic
scattering events. Therefore we have genuine dephasing, irrespective of wihethdr

b are related by time reversal. In some typical circumstances, the dephasing factor can
be re-interpreted as imparting the probability of ‘leaving a trace’ in the environment (see
appendix C). We take now the limit of zero temperature. Assuming for simplicitydhat
andb are related by time reversal, it follows from the definition of the influence functional
that exfi—Sy[z., ,]/h%) can be interpreted as the probability of exciting at least one of
the oscillators along the way.

Up to now we have encountered, depending on the physical circumstances, two possible
interpretations for the dephasing factor. The ‘statistical’ interpretation holds in the case of
static disorder, while the ‘leaving-trace’ interpretation holds in typical cases of a dynamical
environment. Let us keeff = 0 and take the limitE — 0, whereE is the available
energy of the particle. In order to make the following argument more illuminating, one may
assume that the particle has a small but finite kinetic enérggind that all the oscillators
have relatively large frequencies, such that< «,. Consequently, all the scattering events
are elastic. On the other hangt} has a non-vanishing value, which implies that the off-
diagonal terms are being suppressed. Obviously, the ‘leaving-trace’ interpretation of the
dephasing factor no longer holds. One wonders whethef-ep/2?) acquires, under such
circumstances, a somewhat different physical meaning, as in the case of static disorder.
Maybe it now has the probability of being scattered elastically (rather than inelastically)
along the way, thus leading to dephasing of the ‘statistical’ type. A perturbative treatment
of the scattering process leads to the conclusion that the probability of being elastically
scattered by a zero-temperature oscillator is proportionaf toThis is because the elastic
scattering off an oscillator involves a second-order process of virtual emission followed by
absorption of a quantaw,. At the same timeSy[x,, z,] is proportional toc? to leading
order. Therefore, exp-Sy/h?) cannot have the desired physical significance. We therefore
must conclude that something goes wrong with the present semiclassical approach once a
low-energy patrticle is concerned. We shall return to this point later on.

6. Dephasing at high temperatures

As a first step in the application of the semiclassical approach, it is interesting to recover
results (31) and (33) for the dephasing rate. These results hold at high temperatures, such
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that the WNA is applicable. The noise functional in such circumstances takes the following
simple form

Swlr] = 20ksT /0 [w(0) — w(r(')] dr (36)

wherer = x, —x,;. If the two trajectories are well separated with respect to the microscopic
scalet, then one indeed recovers the universal result (31). Recalutt@t= ¢2. At the
other extreme limitt — oo, that corresponds to the ZCL model, one obtains

t
Sy[r] = anBT/ r@)?d = anBTrJZ_ - 1. (37)
0

In the case of the two-slit experiment,~ d, and one recovers (33). Obviously, it is not a
universal result. For example, if the separation between the two trajectories grows linearly,
then the dephasing time will be proportional tp71/3 rather than to AT.

The generalized DLD model with-2 < o < 0, requires special care sinae(0)
diverges. We are still considering high temperatures, such that the WNA is applicable.
Using the notations of appendix D, expression (36) can be cast into the form

Sylr] = vt/ w(r)P(r)dr = vt /00 g(k)dk P (k). (38)
0

The latter expression converges for ar2 < o. In the ZCL limit, wheref is much

larger than the average transverse distance between the trajectories, one may use the small-
k approximation of appendix D, and then (37) is recovered. In the DLD case, where

is very small scale, the integration should be split into the domiirsk, andk > k.

The wavenumbek, = 1/r, is associated with the transverse distancédetween the two
trajectories. Thus,

d for ballistic motiont < g
rL X /Dt for diffusive motiontya < < Terg (39)
L for ergodic motionterg < t.

Note that ergodic motion refers to either chaotic or diffusive trajectories with< ¢.
Again we use the notation of appendix D. Fo<QOo the integration is dominated by the
upper cut-offk ~ 1/¢. One then recovers the standard result (31). On the other hand, for
—2 < o < 0, the integration is dominated by tthe~ k;, modes. The wavelength of these
modes is like the transverse distance between the trajectories. One obtains then

Sy[r] = 2nkpTe? <£> -t WNA for -2 <o < 0. (40)
ry

For non-ergodic diffusive motion, depends on and therefore the dephasing factor is of
the type exp—(t/7,)>=/?). In all other cases we have a simple exponential dephasing
factor.

Obviously (38) is a special case of the general formula (35). Note that (35) should
be multiplied byA?: in order to become a proper expression far. By comparing (35)
to (38) one can reveal the actual condition for the validity of the WNA. Within the interval
0 < k < 1/¢, the power spectrum of the motion occupies a frequency rangew, where
the effective cut-off is

i v/e if k= 1/¢ is located within the ballistic regime
We| =

41
D/¢? if Kk =1/¢ is located within the diffusive regime. 41

As long aswg < kpT/h one can use the WNA in estimating the integral in (35). One
observes that under such circumstances (35) reduces, after multiplicaticm, lig (38).
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7. Dephasing at zero temperatures

As the temperature becomes low, such thak /& < wq, the dephasing rate becomes larger
than the value which is predicted by the WNA. This is due to the ZPF in the frequency
zonekpT /h < w. The temperature becomes effectively zerégf /A < 1/¢. Time longer
thanr is required in order to resolve such low temperatures. One can then use the zero
temperature limit ofp (7) for which ¢ (w) = hnw. This power spectrum corresponds to the
ZPF of the environmental modes.

For either ballistic or chaotic motion, The integral (35) is dominatedXy») modes
that are concentrated below the cuwe= vk. One obtains

1 C 1 - . :
—~ —— x =nlv for ballistic or chaotic motion (42)
Ty Al+o)r h
Similarly, for diffusive motion the integral is dominated b§k, w) modes that are
concentrated below the curve= Dk?. One obtains

4

i = L In <1+ (Z—U) ) X inD for diffusive motion  (43)
Ty 2+o)m D h

In both cases most of the contribution comes from modes with large wavenumber, namely

k~1/e.

The validity of the present semiclassical approach, which is based on the stationary-phase
approximation is limited. Common wisdom [9] is that the applicability of the semiclassical
approach is restricted to circumstances in which the energy transfer between the particle
and the environment is much smaller than the particle’s available energy. Technically,
this is equivalent to the assumption of uncoupled wave equatioi$ie coupledwave
equations for the particle oscillators system canubeoupledprovided certain conditions
are satisfied. Then we can treat the particle as moving with constant veloaitg solve
for the oscillators. It turns out that this reduction requires the assumption of small-energy
transfer. Therefore, one should anticipate problems once oscillatorswyitlarger than
E are involved. In the latter case, there is no justification for thinking of the particle
as decoupled from the bath, moving with some constant velocity, capable of exciting
oscillators along the way. Therefore the corresponding factar-ep,/h?) loses its physical
significance. From the above it follows that a reasonable condition for the validity of our
semiclassical approach is

hwg < E definition of large energy (44)

On physical grounds this is the condition for being able to leave a trace ‘along the way’.
The semiclassical significance of this condition can be further illuminated. For ballistic-
like mation it is equivalent to the condition of small momentum trangfgr < p. This is
precisely the condition for the applicability of the semiclassical methods for the scattering of
the particle by the oscillators. More generally, one can define a quantum mechanical version
of P(k, w) as the FT of the correlator of the Heisenberg picture operatagi/ex)). The
guantal P (k, w) coincides with the classicaP (k, w) only for < E/h. Larger classical
frequencies are not supported by the effectively banded energy spectrum. Our practical
conclusion is that the contribution of ZPF should be included if non-thermal motion with
large energy is concerned. It should be excluded in case of thermal motiorEwitlp T .

1 | thank Uzy Smilansky for pointing out this observation.
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8. Dephasing due to thermal noise

The possible contribution of ZPF to the dephasing has been discussed in the previous
section. Now we are interested in the the thermal noise contribution (TNC). The TNC can
be calculated using (35) with (w) replaced bypr(w). See (23) for the definition of the
latter. As the temperatures are raised various regimes are encountered:

extremely low temperatures < 1/t <kgT/h <1/11
low temperatures & 1/t < kT /h < wqy (45)
high temperatures & we < kT /h.

The timescale, corresponds to the transverse distancef (39). It equalsd/v for ballistic
motion, andreg for ergodic motion. In case of non-ergodic diffusive motion, where= ¢,
the extremely low temperature regime is absent. At high temperatures we can use the WNA
as discussed in previous sections. The low and the extremely low temperature regimes are
discussed in the next two paragraphs.
When consideringxtremely lowtemperatures it is useful to define the critical exponent
o. = 1 for ballistic motion, ands, = 2 for diffusive motion. Ife < o, the integration
in (35) is dominated by ~ k, and one obtains the result

1 2nkgT £\’ kgT/h
—=C/HTBE2><<—> ><< 5T/ ) (46)
Ty h ry 1z,

For o, < o the integration is dominated by~ 1/¢ and one obtains the result

1 27’]kBT€2 % (kBT/E) )

e il el
Ty R? Wl

(47)

In the formulae above”’ is a numerical factor of order unity. Note that in both cases,
disregarding the possible contribution of ZPF, the dephasing rate is proportiorf&. to
This should be contrasted with the high-temperature behaviour where, disregarding the
special case of non-ergodic diffusive motion, the dephasing rate is proportiofial to

At low (but not extremely low) temperatures it is useful to define a temperature-
dependent wavenumber as follows:

kgT /h in the ballistic regime
_ {( 8T /hv) g )

(kgT /RD)Y/? in the diffusive regime.

For o < 0 the integration in (35) is dominated iy~ k,, and one can use the WNA

result (40). Thus, for < 0, in the absence of ZPF contribution, we can trust the WNA at

both high and low temperatures, and an actual crossover is expected only when extremely

low temperatures are involved. For<0o the integration is dominated by~ k7, and one

obtains the result
1_ C’—Z"]ff r
Ty h

02 x (Lkr)°. (49)

If 0. < o, the integration is dominated by~ 1/¢, and one again obtains (47). Thus, for

0 < o < o, there is a non-trivial low-temperature regime where the TNC to the dephasing
rate is proportional to a non-universal power Bf Below this intermediate-temperature
regime the TNC is proportional t§2. Above this intermediate-temperature regime we can
trust the WNA and the dephasing rate is proportional'to
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9. Manifestation of effective static disorder

We shall consider in this section quantal Brownian motion ik 2/ dimensions, that is
described by the DLD model with short range spatial correlations. For concreteness let us
assume that the fluctuations of the effective stochastic potential satisfy

AN
U@, U@, 1)) = ¢ — 1) -Ezexp<—% (‘” - r ) ) . (50)

If we are interested in the dynamics ovdfirdte time intervalz, then obviously all the Fourier
components in the frequency regimie < 1/t will have the same effect as static disorder.
Let us denote by{(x, r) the ‘static’ component of the effective stochastic potential. The
variance oft/ is determined by the produgt(w = 0) - (1/1). Recall thatp(w = 0) = v.
Consequently we have

Tl NI (el 4! 2 1(a" —a ?
UE", U, 1)) = Woexp —§< 7 > (51)

where W2 = v¢?/t. We would like to find out whether this effective static disorder will
manifest itself. A similar question has been raised in [10]. One should not take for granted
that the effect of low-frequency fluctuations is completely masked by the incoherent effect
of the high-frequency modes.

The first obvious step is to calculate the ‘statistical’ dephasing rate due to the presence
of the (effective) disorder. We can use (35) with the formal substitufion) = W?2/¢2,
thus obtaining

1 1 w? /°°
— = =— gk)dk P(k, w = 0). (52)
‘L'g Ez 02 0

For ballistic-like motion one obtains
1 1 L ved\ 1
o owRZ = =).Z. 53
0 B2 (Ezu> t (3)

¢
In order to have a non-vanishing effect we should hqp‘?/eg t. This condition can be cast
into the formé « vt where& = (hv)?/(£W?) is the mean free path. Still another way to
express this condition is}™* « ¢/v, wherez)"N* is given by (31). On the other hand,
the actual dephasing time should satigfy < t,, otherwise coherent effects due to the
scattering by the (effective) disordered potential will not manifest themselves. Thus, we
come to the conclusion that the following condition should be satisfied in order to have
manifestation of coherent effects due to scattering by the effective static disorder:

¢
"< - <, (54)
v

Obviously, this condition can be satisfied only in the low-temperature regime.

10. Dephasing versus dissipation, concluding remarks

It is quite striking that the friction coefficien is not affected by quantum mechanical
effects. Having the Boltzmann picture in mind it is not anticipated that all the quantum
mechanical scattering events will conspire to give the classical result. Still, this conclusion
follows from the FV formalism quite easily. In order to have a clear physical picture, let
us consider the time evolution of a Gaussian wavepacket using either the propagator (26)
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or the equivalent master equation (27). Clearly, the dissipation #aterds the same as in
the classical picture, with small transient corrections. Thus, also in the quantum mechanical
picture, the damping process is characterized by the time constantn/m)~?1.

Consider a ballistic-like motion with non-thermal energy, such that <« p.
Consequently the equivalent condition (44) is satisfied, and we can trust semiclassical
considerations as far as dephasing is concerned. We can cast the universal WNA result (31)
and the ZPF result (42) into the form

1z, { (¢/xr)? high-T (universal) 55

1/7, (€/hp) low-T

whereir is the thermal wavelength, ang; is the de Broglie wavelength. We see that for
the abovenon-thermal motiorthe dephasing time is always shorter than the damping time.
The dephasing rate is linear if at high temperatures, and saturates at low temperatures.

Forthermal motiorthe latter statement is no longer true. For the low-temperature regime
the ZPF contribution should be excluded, and therefore the dephasing rate goes to zero,
while the damping time remains finite. One should differentiate between various physical
circumstances. At extremely low temperatures, assuming ergodic motion, the dephasing
rate is proportional t@2. At higher temperatures we can trust the WNA providee: 0.
Otherwise, there is an intermediate low-temperature regime where the dephasing rate is
proportional to a non-trivial power df'.

In this paper we have introduced a systematic derivation of a general formula for the
dephasing rate, equation (35), that holds in all physical circumstances, including the ZCL
limit. Expressions similar to equation (35), that incorporate integration overithe)
environmental modes, are encountered frequently in the literature, starting from the well
known work in [11]. Whenever diffusive motion of electrons is concerned (see appendix
E), our expressions agree with well known results [7]. However, most publications avoid
a straightforward application of the FV formalism, and introduce at some stage heuristic
considerations in order to obtain a convergent result. There is a ‘zoo’ of cut-offs that are
introduced in performing thék, w) integration, and some of them are questionable. For
example, it is customary to taked, itself as a lower cut-off for the integration. The upper
cut-off is sometimespT /h, sometimes Fermi energy, sometimes the kinetic energy that
corresponds to the drift velocity, sometimes the inelastic scattering rate, and so on. The role
of Fermi statistics in the determination of the various cut-offs is usually left unclear. There
are similar ambiguities in the determination of the the proper cut-offs fok timegration.

Our derivation has led to a proper definition for the power spectrum of the motion, and has
made it unnecessary to introduad hoccut-offs into the calculations. Furthermore, in the
analysis of dephasing at the limit of zero temperature, we were successful in reducing our
considerations to the level of ‘one-particle physics’, thus avoiding a complicated discussion
of the role played by the Pauli exclusion principle.
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Appendix A. Useful identity

We first cite the well known identity

1 i IRV '_ 2 2 _
mexp(—i-zat(x Xo) > = [1+ 50107 + Ot )} 8 (x — xo).

Both sides of this identity should be interpreted as kernels of operators. When applied to
wavefunctions, the left-hand side corresponds to the free-motion propagator, and the second
term in the right-hand side corresponds to the free-motion Hamiltonian. We shall explain
now how to derive the following related identity:

[ .
eXp(g(R — Ro)(r —ro) —in- (R — Ro)>

=[1+ 81953, + ndtd, + OBtH]8(R — Ro)8(r — ro). (A1)

Both sides of the latter identity should be interpreted as kernels of operators that operate
on phase-space functions. We start the derivation by writing an equality that follows from
the first identity via simple replacements:

1 i 1 .\ i 5 n
— exp(j:E (xi = §n5t> ) - [1+ 56102 + 0 )] 5 (xi == gt> .

Upon multiplication it follows that

27 5t

1 [ 1
Nz exp(iﬁ(xi — x%) — IEH(XJF —i—x))

i 1,
= |1+ 50002 (8(x+)—§n5t8 (x+)>

i 1,
- [1 — E&af} <8(x_) + 5818 (x+)> )
Simplification of the right-hand side gives
[ 1
= [1+ 'Ear(ai — %)+ Enat(m —9.)+ 0(312)} S(x)8(x_).

The replacements, — (x” — xj) andx_ — (x" — xg), followed by the transformation to
the variablesR = (x” + x’)/2 andr = (x” — x’), gives the desired result. Note that the
derivation holds also in the case wherés replaced by some function of

Appendix B. Derivation of the master equation

The Wigner functionp (R, P) is the Fourier transform of the reduced-probability density
matrix p(R,r) in the variabler ~» P. The path-integral expression for the kernel
K(R, r|Ro, ro) is of the type[[ DRDr with obvious endpoint conditions, and its integrand

is essentially the same as in (19). See [2] for more details. The infinitesimal-time kernel
equates simply to the integrand of the path-integral expression, namely

Ks = exp(é%(le — Ro)(r — r0) + i%w’(r) (R = Ro) — arh%(w@ - w(r)))

= [1+ 5t (iﬁaRa, — Ew’(r)ar — _iz(w(O) — w(r))) + O(Stz)i|
m m h
§(R — Rg)d(r — rog)
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where the second line is obtained by employing the identity of appendix A. Thus, to
leading order, the kerndls, has the same effect as operating with a differential operator
of the type 1+ 8:£. Consequently, we find thgb(R,r) satisfies a master equation
of the form dp/dt = Lp. This master equation is easily transformed into the Wigner
representation, where any derivati§ieis replaced by multiplication withA /. Similarly,
any multiplication by a (real symmetric) functiafi(r) is transformed into a convolution
with a (real symmetric) kernel;(P — P’). For the convolution/ G(P — P')p(P’)dP’ we
use the notatiorG * p. A kernelG(P — P’) and a functionG(r) are related by a Fourier
transform with the convention
, 1 o pP—P d

G(P—-P) = ZT_E,/_WG(r)COS( 7 r) r.
In the above expression we have modified the standard FT convention, by including the
factor 1/(2xh). This has been done in order to have properly normalized kernels, with
the measure B rather than @/(2zh). Note also that the FT oft’(r) equals to thekdp
derivative of the kerneG r that corresponds to the real symmetric functiofir)/r.

Appendix C. Dephasing and inelastic scattering

Consider the interference contribution of two trajectoreand b that are related by time
reversal. Assuming short range interaction with the environmental modes we can prove
that dephasing is related to the probability for leaving a trace in the environment. This
statement is true at any temperature. ‘Short range interaction’ means that &d that¢

is a small scale. ‘Leaving a trace’ means that at least one of the oscillators has changed its
guantum-mechanical state. It follows that under such circumstances dephasing-rate is equal
to the inelastic scattering rate.

Recall the definition of the influence functional. For simplicity we consider first a
zero-temperature bath, meaning that all the bath-oscillators are initially in the ground state.
These oscillators are driven by the motion of the particle. The excited states of the bath
will be denoted byi{n,}). The evolution operator of a driven oscillator will be denoted by
Uy[x].

Flxa, x5) = Y (e [ [ Ualo]HOD ()1 | | UalxallOD)*.
{na} o o

If a andb are related by time reversal, then one can consider only those oscillators that

are located ‘along the loop’. Each oscillator along the loop is characterized by its natural

frequencyw, and by the time, at whichx,(¢) ~ x,. Consequently we have the following

expression for the influence functional:

Flxg, xp] = ) e Zae @m0 p({n,}|{0}) (C1)
{14}

where the excitation probability i® ({n,}/{0}) = []|{n«|U[x.]110)]?. We would like to
argue thatF[x,, x,] = P({0}|{0}). Indeed, the summation in (C1) contaiose-oscillator
excitations for whichy_ n, = 1, two-oscillator excitations for whichy_n, = 2 and so on.
Let us consider all the one-oscillator excitations that involwgsn the range ¢, w+Sw).
Each of these excitations contributes the sahigz, }|{0}), but with a different phase factor
exp(i2wyty). By construction of the DLD model (equation (12)), the summation over the
phase factors will lead to a zero contribution. The meaning of ‘zero contribution’ is as
follows: either we average over realizations xf, or else we recall that the influence
functional appears inside a path-integral expression. The summation over paths will have
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the same effect like an averaging procedure, and therefore we will have indeed a ‘zero
contribution’ in the mathematically-generalized sense. Similar argumentation applies to
other subsets of excitations. If the bath is initially in thermal equilibrium, rather than in
zero temperature, than the relatidiix,, x,] = P({0}|{0}) can be generalized into

Fx4, xp] = exp(—Sy[x.. x3]/h%) = P (leaving no trace) (C2)

In order to prove the latter statement one should use the same procedure as ab¢{@ )with
replaced by some arbitrary initial preparatign®}). Then the result should be thermally
averaged.

Appendix D. Statistical characterization of the trajectories

Having a paira andb of trajectories, we can define the function
Pup(r, 1) = (8(r — (o (t' +7) — 2(1)))) (D1)

where the average is over within the time interval [0z] which is considered. We shall
use the notation®,, = Py andP,, = P, fora # b. Itis also useful to define the functions

P(r,t)=Pi(r,v)— P (r, 1)
P(r) = P(r,0).

The FT of P(r) will be denoted byP (k), and the double FT of (r, t) will be denoted by

P(k, w). The above functions all appear within integrals where ‘isotropic’ integration over
T or k is being performed. Therefore it is convenient to average all these functions over all
orientations, and so to have functions that depend on eitkefr| or k = |k| respectively.

A useful notation is Cag) = (cog€2 - r)), where the average is over the orientation of the
unit vectorQ2. The function Co&-) depends only ofw|. It equals coé-) in one dimension,
regular Bessel functiog/p(r) in two dimensions, and siiic) in three dimensions.

We shall distinguish now betweeballistic trajectories as in figure 8§, chaotic
trajectories as in figure Bf, and diffusive trajectories as in figure 8. We can also
add to this list the case of diffusive trajectories that cover ergodically the whole available
space. In case of a ballistic trajectoPy(r, r) = d(r — 7), leading toP;(k, ) = Cogkr),
where7 = vr. Similar expressions hold foP,, wherer ~ (d? 4+ (vr)?)~Y?, andd is
the transverse distance between the slits. For a chaotic trajeBjoryr) starts as in the
ballistic case, whileP, (r, t) is uniform in»r. The ergodic time is given essentially by the
ballistic time, namelyrerg = tha = L/v, whereL is the linear dimension of the cavity. For
Terg < T both Py(r, ) and P, (r, r) become uniform in-. For diffusive motionP(r, t) is
as for the ballistic case as long as< 1,q Wheren,g = D/v?. At larger times it becomes a
Gaussian, and consequeniy(k, t) = exp(—Dk?t), where D is the diffusion coefficient.
The latter expression as well as the approxima#oiir, t) ~ P (r, t) hold for non-ergodic
diffusive motion. After the ergodic timee,g = L?/D, both Py(r,t) and P, (r, ) become
uniform in r.

In the following paragraphs we discuss the variauggimes of the functiorP (k, w).

We shall distinguish between the smalkegime and the large-regime. In the case of
diffusive trajectories the largk-regime will be further divided into a ballistic regime
(v/D < k) and a diffusive regimek(< v/D), wherev/D is the inverse of the mean free
path. We turn first to define the notions of small and larg&he transverse distance between
two trajectories has a distributioR, (), and we can define a typical valuge = ((r?))%2.
See equation (39). The associated wavenumbkr is 1/r, . Largek means from now on

(B2)
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k, < k. For largek we may use the approximation
Pk, w) ~ Py(k, ) for largek (meaningk, « k). (D3)

For either ballistic, diffusive or chaotic trajectories we have
1. ) . .
Pk, w)~ —B (3) in the ballistic regime (D4)
vk vk

where B is the FT of the Cos function. This rectangular-like scaling function has a unit
width and a unit normalization. In the case of diffusive motion we also have

2Dk?
(Dk?)2 + 2
Diffusive regime means here any largehat satisfiex < v/D. The validity of the latter
approximation is further restricted by the conditien< v?/D. The collision frequency
w ~ v?/D should be used as a cut-off to the sloyw? power-law decay. In our calculations
we shall assume that/4 <« v/D, meaning that the motion is diffusive also on the spatial
scale?.

For smallk, meaningk < k., the transverse term cannot be ignored, and we can no
longer use the approximation (D3). We can define a timescalthat corresponds té, .
It equalsd/v for ballistic motion, for diffusive motion, andrery for ergodic motion. For
a given smallk, the functionP (k, t) is concentrated within < z,, sinceP; and P, are
not identical there. Consequently

Pk, w) ~ in the diffusive regime (D5)

Pk,w)~ 1, - P(k) for o < 1/7, in the smallk regime (D6)

The functionP, (k) is the FT of P, (r), and therefore we have fa? (k) = 1 — P, (k) the
following small« approximation

1d%k? for ballistic motion
P(k) ~ 3rik? = { Dt - k? for diffusive motion (D7)
1L%K? for ergodic motion.

For largek we haveP (k) ~ 1, as implied by (D3) and the definition (D2).

Appendix E. Friction constant for electrons in metal

The effect of electron—electron Coulomb interaction can be analysed by considering the
motion of a single electron under the influence of a fluctuating electrostatic potétdiat)

that is created by the other electrons. Thus the electron experiences an interaction with
a fluctuating field that is characterized K/ (x”, t")U(x', ¢')). It is well known, using

the fluctuation—dissipation theorem, that for diffusive electrons the corresponding power
spectrum is

) _
(k) () = Z—d : k—lza)ﬁcoth(zzz) ) for w < f—lc k| < %

The ohmic behaviour is cut off by the Drude collision frequengy.1 The elastic mean free

path is¢ = vt., wherev is the Fermi velocity. Fok < 1/¢ the power spectrun® (k, w)

of the diffusive motion is concentrated below the Drude cut-off frequency. The ballistic

regime ¥¢ < k is of no interest because its contribution is suppressed due to the Drude

cut-off. One observes that these fluctuations correspond to the generalized DLD model (15)

with ¢ = d — 2. Having observed that the mean free path is the physical (effective) cut-off



8220 D Cohen

for the spatial fluctuations (this statement is truedok 4), it follows from the convention
lw”(0)] = 1 that the friction constant (up to dimensionless factor of order unity) is given
by the expression

2 1\ 1
== (=) = =A,. E1
g ad<£> Dot (ED)

Here e is the charge of an electron, ant); is the conductivity defined fod = 1,2, 3
dimensions. The last equality is obtained by using the Einstein relation in order to express
o, in terms of D. The notationA, stand for the mean level spacing within a cube whose
volume is¢?.
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